Headings
# H1
## H2
### H3
#### H4
##### H5
###### H6
H1
H2
H3
H4
H5
H6
Paragraphs
This is a paragraph.
I am still part of the paragraph.
New paragraph.
This is a paragraph. I am still part of the paragraph.
New paragraph.
Image
Web Image
![Web Image](https://i.loli.net/2019/04/13/5cb1d33cf0ee6.jpg)
Local Image
![Local Image](100.jpg)
Web Image
Local Image
Block Quotes
> This is a block quote
This is a block quote
Code Blocks
```javascript
// Fenced **with** highlighting
function doIt() {
for (var i = 1; i <= slen ; i^^) {
setTimeout("document.z.textdisplay.value = newMake()", i*300);
setTimeout("window.status = newMake()", i*300);
}
}
```
function doIt() {
for (var i = 1; i <= slen ; i^^) {
setTimeout("document.z.textdisplay.value = newMake()", i*300);
setTimeout("window.status = newMake()", i*300);
}
}
Tables
| Colors | Fruits | Vegetable |
| ------------- |:---------------:| -----------------:|
| Red | *Apple* | [Pepper](#Tables) |
| ~~Orange~~ | Oranges | **Carrot** |
| Green | ~~***Pears***~~ | Spinach |
Colors | Fruits | Vegetable |
---|---|---|
Red | Apple | Pepper |
Oranges | Carrot | |
Green | Spinach |
List Types
Ordered List
1. First item
2. Second item
3. Third item
- First item
- Second item
- Third item
Unordered List
- First item
- Second item
- Third item
- First item
- Second item
- Third item
Math
$$
evidence\_{i}=\sum\_{j}W\_{ij}x\_{j}+b\_{i}
$$
$$
AveP = \int_0^1 p(r) dr
$$
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
$$ evidence_{i}=\sum_{j}W_{ij}x_{j}+b_{i} $$
$$ AveP = \int_0^1 p(r) dr $$
When $a \ne 0$, there are two solutions to (ax^2 + bx + c = 0) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
Emoji
This is a test for emoji. 😄 🙈 😸 🍉